On Feb. 19 at the annual meeting of the American Association for the Advancement of Science in San Francisco, movie lovers get a behind-the-scenes glimpse at the physics-based simulations that breathe life into fantasy.
"It is an exhaustive task to prescribe the motion of every degree of freedom in a piece of clothing or a crashing wave," says Ron Fedkiw, an assistant professor of computer science at Stanford who will speak about computations used to make solids and fluids more realistic in feature films. "Since these motions are governed by physical processes, it can be difficult to make these phenomena appear natural. Thus, physically based simulation has become quite popular in the special effects industry. The same class of tools useful for computational fluid dynamics is also useful for sinking a ship on the big screen."
Fedkiw's talk is part of a symposium titled "Blockbuster Science: Math and Science Behind Movies and Entertainment," which brings together leaders from industry and academia. The other speakers are Tony DeRose of Pixar in Emeryville, Calif., and Doug Roble of Digital Domain in Venice, Calif. Math Professor Tony Chan of the University of California-Los Angeles will moderate the symposium.
Science at the Oscars
This year, two of the three movies nominated for a special effects Oscar--Poseidon and Pirates of the Caribbean: Dead Man's Chest, both made by Industrial Light & Magic (ILM)-- required heavy numerical simulation, says Fedkiw, who has consulted for ILM for six years. Most recently, the PhysBAM (for Physics Based Modeling) core math engine he developed helped to create realistic water in Poseidon and Davy Jones' tentacles in Dead Man's Chest.
Computer graphics (CG) experts used to have to make a Catch-22 decision. They could run inferior algorithms on many processors or run the best algorithm on only one processor. The problem is that many algorithms do not scale well to larger num
'"/>
Contact: Dawn Levy
dawnlevy@stanford.edu
650-725-1944
Stanford University
19-Feb-2007