The research, in which mouse embryonic stem (ES) cells were injected into rats whose virus-damaged spinal cords model nerve disease, shows that such cells can be made to re-trace complex pathways of nerve development long shut off in adult mammals, the researchers say.
"This is proof of the principle that we can recapture what happens in early stages of motor neuron development and use that to repair damaged nervous systems," says Douglas Kerr, M.D., Ph.D., a neurologist who led the Hopkins team.
"It's a remarkable advance that can help us understand how stem cells can begin to fulfill their great promise," says Elias A. Zerhouni, director of the National Institutes of Health. "Demonstrating restoration of function is an important step forward, though we still have a great distance to go."
The researchers created what amounts to a cookbook recipe to restore lost nerve function, Kerr explains. The approach could one day repair damage from such diseases as ALS (Lou Gehrig's disease), multiple sclerosis or transverse myelitis or from traumatic spinal cord injury, the researchers say. "With small adjustments keyed to differences in nervous system targets," Kerr says, "the approach may also apply to patients with Parkinson's or Huntington's disease."
In a report on the study, to be released online June 26 in the Annals of Neurology, the Hopkins team says 11 of the 15 treated rats gained significant, though partial, recovery from paralysis after losing motor neurons to an aggressive infection with Sindbis virus -- one that, in rodents, specifically targets motor neurons and kills them. The animals recovered enough muscle strength to bear weight and step with the pre
'"/>
Contact: Eric Vohr
evohr1@jhmi.edu
410-955-8665
Johns Hopkins Medical Institutions
21-Jun-2006