Kidney transplantation has emerged as the treatment of choice for medically suitable patients with end-stage kidney disease, according to background information in the article. More than 60,000 patients await kidney transplantation and are listed on the United Network for Organ Sharing (UNOS) recipient registry. Live donor kidney transplantation represents the most promising solution for closing the gap between organ supply and demand. Unfortunately, about one-third of patients with willing live donors will be excluded from kidney transplantation because of blood type or tissue incompatibility.
Kidney paired donation (KPD) offers an incompatible donor/recipient pair the opportunity to match with another donor and recipient in a similar situation. In the United States, these exchanges are currently performed at few institutions, with matches identified through local or regional patient databases. UNOS has recently proposed a national live donor KPD program through the Organ Procurement and Transplantation Network, but regulatory obstacles to a national program still exist; therefore, no data exist regarding the impact of national vs. regional programs.
Dorry L. Segev, M.D., of the Johns Hopkins University School of Medicine, Baltimore, and colleagues developed a novel kidney donor matching algorithm using optimization, a mathematical technology used in various applications. They then created a mathematical model that uses simulated pools of incompatible donor/recipient pairs to determine if their new matching algorithm might improve matches that can be found in a small (regional) or large (national) pool. The researchers compared the optimized algorithm with the scheme currently used
'"/>
Contact: Trent Stockton
410-955-8665
JAMA and Archives Journals
19-Apr-2005