Understanding where noise arises in the brain has implications for advancing research in neuromotor control and in developing therapies for disorders where control is impaired, such as Parkinson's disease.
The new study was developed "to understand the brain machinery behind such common movements as typing, walking through a doorway or just pointing at an object," says Stephen Lisberger, PhD, senior study investigator who is director of the W.M. Keck Center for Integrative Neuroscience at the University of California, San Francisco.
Study co-investigators are Leslie C. Osborne, PhD, a postdoctoral fellow at UCSF, and William Bialek, PhD, professor of physics at Princeton University.
The study findings, reported in the September 15 issue of the journal Nature, are part of ongoing research by Lisberger and colleagues on the neural mechanisms that allow the brain to learn and maintain skills and behavior. These basic functions are carried out through the coordination of different nerve cells within the brain's neural circuits.
"To make a movement, the brain takes the electrical activity of many neurons and combines them to make muscle contractions," Lisberger explains. "But the movements aren't always perfect. So we asked, what gets in the way?"
The answer, he says, is "noise," which is defined as the difference between what is actually occurring and what the brain perceives. He offers making a foul shot in basketball as an example. If there were no noise in the neuromotor system, a player would be able to perform the same motion over and over and never miss a shot. But noise prevents even the best players in the NBA from having perfect foul-shooting percentages, he says.
<
'"/>
Contact: Linda Gebroe
lgebroe@pubaff.ucsf.edu
415-476-2557
University of California - San Francisco
22-Sep-2005