The new findings, led by researchers at Beth Israel Deaconess Medical Center (BIDMC), offer a potential new target for the development of anti-diabetic therapies to lower serum RBP4 levels as well as an early means of identifying individuals who are at risk of developing diabetes before the onset of overt disease.
"Type 2 diabetes is a rapidly increasing epidemic in the Western world," explains senior author Barbara Kahn, MD, Chief of the Division of Diabetes, Endocrinology and Metabolism at BIDMC and Professor of Medicine at Harvard Medical School. "Since it is now occurring even in childhood, predictions indicate that it could shorten lifespan in the U.S. for the first time in more than a century."
Insulin resistance develops when the body's muscles, fat and liver cells lose the ability to respond to the hormone insulin. Because insulin is necessary to enable the body to take up sugar from blood and convert it into energy, this impairment results in a buildup of glucose in the bloodstream.
"Insulin resistance not only predisposes individuals to type 2 diabetes, it is also a major risk factor for cardiovascular disease," adds co-lead author Timothy Graham, MD, an investigator in the Kahn laboratory. "Unfortunately, in the clinical setting, it is often difficult to distinguish individuals with and without insulin resistance."
Last year, in a study conducted in animals, Kahn's laboratory made the discovery that RBP4, a protein secreted from fat, can cause insulin resistance. Prior to this, the molecule was recognized only for its role in the transport of vitamin A.
In this new research, Graham, together with co-lead autho
'"/>
Contact: Bonnie Prescott
bprescot@bidmc.harvard.edu
617-667-7306
Beth Israel Deaconess Medical Center
14-Jun-2006