Albuquerque, N.M. -- Far above the heads of Earthlings, arrays of single-cell creatures are circling Earth in nanostructures.
The sample devices are riding on the International Space Station (courtesy of Sandia National Laboratories and the University of New Mexico, NASA and US Air Force) to test whether nanostructures whose formations were directed by yeast and other single cells can create more secure homes for their occupants - even in the vacuum and radiation of outer space - than those created by more standard chemical procedures.
Sandia is a National Nuclear Security Administration laboratory.
"Cheap, tiny, and very lightweight sensors of chemical or biological agents could be made from long-lived cells that require no upkeep, yet sense and then communicate effectively with each other and their external environment," says former UNM graduate student and Sandia consultant Helen Baca, lead author on the paper. Baca was advised by Sandia Fellow and UNM professor of chemical engineering, molecular genetics & microbiology Jeff Brinker.
Groups of such long-lived cells may also serve as models to investigate how tuberculosis bacteria survive long periods of dormancy within human bodies.
En masse, they also may be used to generate signals to repel harmful bacteria from the surfaces of surgical tools like catheters.
Finally, the method also offers a simple method to genetically modify cells.
"This is not the end of the story, but the beginning," says Brinker. "No one else has created these symbiotic materials and observed these effects. It's a totally new area."
But how does all this happen?
Probably you want more details
What better arrangement when building a new house than for the architect to consult with the tenants?
In a paper in the July 21 issue of Science, a team of researchers from Sandia and UNM under the leadership of Brinker demonstrated that co
'"/>
Contact: Neal Singer
nsinger@sandia.gov
505-845-7078
DOE/Sandia National Laboratories
21-Jul-2006