A small group of APL researchers, in collaboration with physicians from the Johns Hopkins Scleroderma Center in Baltimore, developed and recently completed initial trials for a miniature device to help physicians characterize Raynaud's disease and measure treatment effectiveness.
"The Ambulatory Raynaud's Monitor is a tiny, Band-Aid-like device that enables physicians to objectively characterize a patient's condition, determine its severity and measure symptoms in real time," says Dr. Frederick Wigley, director of the Johns Hopkins Scleroderma Center and one of the country's leading scleroderma experts, who asked the Johns Hopkins University Applied Physics Laboratory (APL), in Laurel, Md., to develop the device after reading about APL's work developing miniature devices for spacecraft. "Until now, Raynaud's research has been crippled without such a device."
The small, low-cost monitor wraps around a patient's finger and is secured with a bandage or medical tape. It contains two sensors that alternately record skin and ambient temperatures indicators of surface blood flow every 36 seconds. Interactive controls permit a patient to record the date and time of a suspected Raynaud's attack. A week's data is held by the monitor's electronics and is retained even if the device's power is unexpectedly interrupted.
Physicians can easily download data into a computer or PDA (personal digital assistant). Software developed by APL enables physicians quickly and easily to display and plot data, which could be done during a patient's appointment to provide real-time feedback. The monitoring system's batteries store enough energy to operate for several months, and devices can be cleaned and reinitialized for use with multiple patients.
Triggered by cold temperatures or stress, Raynaud's is characterized by numbness and coldness in the fingers, toes, ears and/or nose when blood vessels in those areas constrict during attacks. Insuffic
'"/>
Contact: Kristi Marren
kristi.marren@jhuapl.edu
240-228-6268
Johns Hopkins University
31-Jan-2007