New evidence indicates that the loss of two types of brain cells--not just one as previously thought--may trigger the onset of symptoms associated with Parkinson's disease.
The evidence, based on mouse models, shows a link between the loss of both norepinephrine and dopamine neurons and the delayed onset of symptoms associated with Parkinson's disease. It was originally thought that the loss of only dopamine neurons triggered symptoms. Dopamine is a neurotransmitter critical for coordinating movement.
Results of the study by Emory scientists, along with the University of Georgia, will appear in the Proceedings of the National Academy of Sciences, Early Edition online during the week of Aug. 13-17 and in the Aug. 21 print edition.
The research was conducted by Karen Rommelfanger, graduate student in the laboratory of David Weinshenker, PhD, assistant professor of human genetics in Emory University School of Medicine and Gary Miller, PhD, associate professor in Emory's Rollins School of Public Health. The team also included Gaylen Edwards and Kimberly Freeman at the University of Georgia.
Parkinson's disease affects motor coordination and is characterized by symptoms such as tremors of hands, arms, legs, jaw and face; rigidity or stiffness of limbs and trunk; bradykinesia, or slowness of movement; and postural instability. The disease most often occurs in those over 50.
"People don't start showing symptoms of Parkinson's disease until about 80 percent of their dopamine neurons are gone, which is when you cross some sort of threshold. Our study looked at what happens while the dopamine neurons are dying and people still appear fine, says Dr. Weinshenker. "The lack of symptoms until the death of most of the dopamine neurons suggested the existence of a system that can temporarily compensate for the loss of the dopamine."
"The dogma in the field is that Parkinson's disease involves a selective loss of dop
'"/>
Contact: Holly Korschun
hkorsch@emory.edu
404-727-3990
Emory University
13-Aug-2007